Generative Adversarial Nets

DCGANs in TensorFlow

carpedm20/DCGAN-tensorflow 我们定义网络结构:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

def generator(self, z):
self.z_, self.h0_w, self.h0_b = linear(z, self.gf_dim*8*4*4,
'g_h0_lin', with_w=True)

self.h0 = tf.reshape(self.z_, [-1, 4, 4, self.gf_dim * 8])
h0 = tf.nn.relu(self.g_bn0(self.h0))

self.h1, self.h1_w, self.h1_b = conv2d_transpose(h0,
[self.batch_size, 8, 8, self.gf_dim*4], name='g_h1', with_w=True)
h1 = tf.nn.relu(self.g_bn1(self.h1))

h2, self.h2_w, self.h2_b = conv2d_transpose(h1,
[self.batch_size, 16, 16, self.gf_dim*2], name='g_h2', with_w=True)
h2 = tf.nn.relu(self.g_bn2(h2))

h3, self.h3_w, self.h3_b = conv2d_transpose(h2,
[self.batch_size, 32, 32, self.gf_dim*1], name='g_h3', with_w=True)
h3 = tf.nn.relu(self.g_bn3(h3))

h4, self.h4_w, self.h4_b = conv2d_transpose(h3,
[self.batch_size, 64, 64, 3], name='g_h4', with_w=True)

return tf.nn.tanh(h4)

def discriminator(self, image, reuse=False):
if reuse:
tf.get_variable_scope().reuse_variables()

h0 = lrelu(conv2d(image, self.df_dim, name='d_h0_conv'))
h1 = lrelu(self.d_bn1(conv2d(h0, self.df_dim*2, name='d_h1_conv')))
h2 = lrelu(self.d_bn2(conv2d(h1, self.df_dim*4, name='d_h2_conv')))
h3 = lrelu(self.d_bn3(conv2d(h2, self.df_dim*8, name='d_h3_conv')))
h4 = linear(tf.reshape(h3, [-1, 8192]), 1, 'd_h3_lin')

return tf.nn.sigmoid(h4), h4

当我们初始化这个类时,我们将使用这些函数来创建模型。 我们需要两个版本的鉴别器共享(或重用)参数。 一个用于来自数据分布的图像的minibatch,另一个用于来自发生器的图像的minibatch。

1
2
3
4
self.G = self.generator(self.z)
self.D, self.D_logits = self.discriminator(self.images)
self.D_, self.D_logits_ = self.discriminator(self.G, reuse=True)

接下来我们定义损失函数。我们在D的预测值和我们理想的判别器输出值之间使用交叉熵,而没有只用求和,因为这样的效果更好。判别器希望对“真实”数据的预测全部是1,并且来自生成器的“假”数据的预测全部是零。生成器希望判别器对所有假样本的预测都是1。

1
2
3
4
5
6
7
8
9
10
11
12
self.d_loss_real = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(self.D_logits,
tf.ones_like(self.D)))
self.d_loss_fake = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(self.D_logits_,
tf.zeros_like(self.D_)))
self.d_loss = self.d_loss_real + self.d_loss_fake

self.g_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(self.D_logits_,
tf.ones_like(self.D_)))

收集每个模型的变量,以便可以单独进行训练。

1
2
3
4
5
t_vars = tf.trainable_variables()

self.d_vars = [var for var in t_vars if 'd_' in var.name]
self.g_vars = [var for var in t_vars if 'g_' in var.name]

现在我们准备好优化参数,我们将使用ADAM,这是一种在现代深度学习中常见的自适应非凸优化方法。ADAM通常与SGD竞争,并且(通常)不需要手动调节学习速率,动量和其他超参数。

1
2
3
4
d_optim = tf.train.AdamOptimizer(config.learning_rate, beta1=config.beta1) \
.minimize(self.d_loss, var_list=self.d_vars)
g_optim = tf.train.AdamOptimizer(config.learning_rate, beta1=config.beta1) \
.minimize(self.g_loss, var_list=self.g_vars)

我们已经准备好了解我们的数据。在每个epoch中,我们在每个minibatch中采样一些图像,并且运行优化器更新网络。有趣的是,如果G仅更新一次,判别器的损失则不会为零。另外,我认为d_loss_faked_loss_real在最后的额外的调用回到是一点点不必要的计算,并且是冗余的,因为这些值是作为d_optimg_optim的一部分计算的。作为TensorFlow中的练习,您可以尝试优化此部分并将RP发送到原始库。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
for epoch in xrange(config.epoch):
...
for idx in xrange(0, batch_idxs):
batch_images = ...
batch_z = np.random.uniform(-1, 1, [config.batch_size, self.z_dim]) \
.astype(np.float32)

# Update D network
_, summary_str = self.sess.run([d_optim, self.d_sum],
feed_dict={ self.images: batch_images, self.z: batch_z })

# Update G network
_, summary_str = self.sess.run([g_optim, self.g_sum],
feed_dict={ self.z: batch_z })

# Run g_optim twice to make sure that d_loss does not go to zero
# (different from paper)
_, summary_str = self.sess.run([g_optim, self.g_sum],
feed_dict={ self.z: batch_z })

errD_fake = self.d_loss_fake.eval({self.z: batch_z})
errD_real = self.d_loss_real.eval({self.images: batch_images})
errG = self.g_loss.eval({self.z: batch_z})

Generative Adversarial Networks代码整理

  • InfoGAN-TensorFlow:InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets

  • iGAN-Theano:Generative Visual Manipulation on the Natural Image Manifold

  • SeqGAN-TensorFlow:SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient

  • DCGAN-Tensorflow:Deep Convolutional Generative Adversarial Networks

  • dcgan_code-Theano:Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

  • improved-gan-Theano:Improved Techniques for Training GANs

  • chainer-DCGAN:Chainer implementation of Deep Convolutional Generative Adversarial Network

  • keras-dcgan